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Dynamic condensation methods have been widely used to reduce the number of degrees of freedom of finite
element models. Most of them, however, are valid for undamped systems. An efficient iterative approach for the
dynamic condensation of nonclassically damped systems is proposed. The classical subspace iteration method for
undamped models is extended to nonclassically damped models. Then, a governing equation for the dynamic con-
densation matrix in state space is derived from the extended subspace iteration. Two iterative schemes are proposed
to solve the governing equation. Because the dynamic condensation matrix is independent of the system matrices
and the eigenpairs (eigenvalues and eigenvectors) of the reduced model, it is unnecessary to compute them in every
iteration. This makes the present method much more computationally efficient than those approaches proposed in
the past. The convergence of the proposed approach is also proven. Two numerical examples, one discrete mass-
damper-spring system and one floating raft isolation system, are included to demonstrate the convergence of the
present method. The results show that the convergence of the present method is much faster than the previous
approaches, especially when the dynamic characteristics of the reduced model are very close to the full model.

Nomenclature

(2n x 2n) system matrix of the full model in state
space defined in Eq. (3)

(2m x 2m) system matrix of the reduced model in
state space defined in Eq. (15a)

(2n x 2n) system matrix of the full model in state
space defined in Eq. (3)

(2m x 2m) system matrix of the reduced model in
state space defined in Eq. (15b)

(n x n) damping matrix of the damped system
unity matrix

(n x n) stiffness matrix of the damped system
integer, k > 1

(n x n) mass matrix of the damped system

= number of low eigenpairs to be considered; number
of the master degrees of freedom

number of the total degrees of freedom of the

full model

= (2m x 2m) eigenvector matrix of the projected
model defined in Eq. (22)

= (25 x 2m) dynamic condensation matrix

= number of the slave degrees of freedom

= displacement response vector; new subspace defined
in Eq. (20)

= velocity response vector

accelerationresponse vector

error tolerance of eigenvalue used in Eq. (24)

error tolerance of the real and imaginary parts of the
complex eigenvalue used in Egs. (42) and (44)
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& = error tolerance of the column vector in the dynamic

_ condensation matrix used in Eq. (45)

A = (2m x 2m) eigenvalue or spectral matrix of the
projected model defined in Eq. (22)

A® = the ith approximation of the jth eigenvalue

-
[

(n x n) submatrix of the eigenvector matrix
defined in Eq. (4)

¥ = (2n x 2n) eigenvector matrix defined
in Egs. (2) and (4)

Q = (n x n) submatrix of the eigenvalue or spectral

~ matrix defined in Eq. (4)

Q = (2n x 2n) eigenvalue or spectral matrix defined
in Egs. (2) and (4)

Subscripts

J = jtheigenvalue

m = m columns or rows; parameters associate with the
master degrees of freedom

p = system matrices of the projected model

R = parameters of the reduced model

s = parameters associate with the slave degrees of
freedom

Superscripts

i—1,i, = i —1th,ith, andi 4 1th approximation

i+1

T = matrix transpose

0 = 1initial approximation

3

= complex conjugate

I. Introduction

S structures to be solved for dynamic characteristics become

larger or more complex, the computing time and the corre-
sponding costs increase drastically. Hence, various techniqueshave
been used to reduce the size of the full systems or the dimension of
the structural matrices involved in the formulation. Dynamic con-
densation, as an efficient technique for model reduction, was first
applied to large finite element models for faster computation of the
natural frequencies and mode shapes. In recent years, it has been
used in test-analysismodel correlation, vibration control, structural
dynamic optimization, dynamic modeling, and so on.!
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Since Guyan? and Irons? first proposedthis technique, many kinds
of algorithms*~!> have been developed to improve the accuracy of
condensation. Among them, the iterative methods are usually more
efficient than others because the dynamic condensation matrix in
these approachesis updated repeatedly until the desired convergent
values are obtained.'® However, most of the dynamic condensation
methods proposed in the past have been restricted to undamped
models. For proportionally damped systems, the damping does not
affect the eigenvectors on which the dynamic condensation matrix
depends. Therefore, the dynamic condensationmatrix defined for an
undamped model is also valid for the corresponding proportionally
damped model. Unfortunately, there are a lot of situationsin which
the proportional damping assumption is invalid. Examples of such
cases are the structures made up of materials with differentdamping
characteristics in different parts, structures equipped with passive
and active control systems, and structures with layers of damping
materials.!”

An iterative method for dynamic condensation of viscously
damped systems was proposed by Qu! in 1998. In this method, two
governingequations for the dynamic condensationmatrix, which re-
lates the eigenvectorsassociated with the master and slave degrees of
freedomin state space, were derived. Because the eigenvectors and
eigenvalues of the reduced model are not included in the equation,
it is unnecessary to solve for the eigenproblem in every iteration.
Also, this method was used to the active vibration control of high
buildings with active tuned mass dampers.

Most recently, a dynamic condensation approach applicable to
nonclassically damped structures was proposed by Rivera et al.!”
This approachis a generalizationand extension of the condensation
approachin Ref. 6. In this method, the eigenproperties obtained in
an iterative step are used to improve the condensation matrix in the
following iterative step.

In this paper, the standard subspace iteration method for un-
damped models'® is first extended to the nonclassically damped
systems. A governing equation for the dynamic condensation ma-
trix is then derived based on the extended method. Two iterative
schemes are proposed to solve the governing equation. The present
method has three advantages: 1) The convergence is much faster
than the methods in Refs. 1 and 17, especially when the approxi-
mate values of the reduced model are close to the full model. 2) A
full proof of the convergence can be made simply. 3) Because there
are no parameters of the reduced model in the governing equation
of the dynamic condensation matrix, it is unnecessary to calculate
them during every iteration. This makes the iterative scheme much
more computationally efficient, especially when the number of the
master degrees of freedom is large.

II. Basic Theory of Complex Modes

The dynamic equilibrium of an n-degree-of-freedomnonclassi-
cally damped system can be expressed in a matrix form as

MX(t) + CX(t) + KX (1) = F(1) (1)
where the mass matrix M, damping matrix C, and stiffness matrix
K are assumed to be positive definite, positive semidefinite, and
positive semidefinite, respectively. The corresponding eigenvalue
problem of this system may be written in state space as

AY = BYO )

in which the system matrices A and B are real, symmetric, and

defined as
K 0 —-C —-M
A= , B = (3)
0 —M -M 0

The complex conjugate eigenvector matrix ¥ and the eigenvalue
or spectral matrix £ have the forms

A 4 - [@ o
\II:|:‘PQ ‘PQ] Q:[o Q*i| @

Here the eigenvaluesin matrix Q are arrangedin an ascendingorder.
The eigenvector matrix is assumed to have been normalized such
that

YAY = Q, Y'BY =1 (5)
If only the lower m eigenpairs are considered in Eq. (2), one has

A\ilm - B\ilm SM)mm (6)

or in an expanded form

K 0 ¥, ¥
0 —M||¥.Q,. ¥

'mm

_ -C -M \Pm \P:I Qm m 0 (7)
B -M 0 \Pm Qmm \P:, Q* 0 Q*

'mm mm

in which the dimensions of submatrices ¥,, and Q2,,,, are n x m and
m x m, respectively.

III. Tterative Methods of Qu' and Rivera!’

In the dynamic condensationtechnique, the total degrees of free-
dom n of the full model are usually divided into the master degrees
of freedom m, which will be retained in the reduced model, and the
slave degrees of freedom s, which will be omitted. Based on this
division, Eq. (6) can be rewritten in a partitioned form as

Amm Am.\' ¥ Bmm Bm.\' I N
A Tnla,, ®
A”” A“ \I{‘.m Bs‘m Bm \lem

where the submatrices are given by

Kmm 0 T Kn[ly 0
Amm = . Amx =A' =
0 _Mmm s 0 _me

Kvs 0 - Cm m -M mm
Ag = s B, =
0 _Mm

_Mmm 0
T - Cm s -M ms - Cx s _Mv s
B,, =B, = s B, =
. -M ms 0 _Mm 0

o \Pm m \P:I m V) \IIX 5 \szm
\Pmm - [\Pmm Qmm \P* Q:,”] ' \lem B [\I{\‘mgmm \PTmQ* J

mm mm

é _ Qmm 0 (9)
mm 0 Q*

Expanding the lower part of Eq. (8) and rearranging the resultyields
\ilxm = A\_§1 (Bs'm\ilmm Q’H’H + BS.\'\iIXmQ”I”I - AXm\ilmm) (10)

According to the definition of the dynamic condensation matrix of
nonclassically damped systems,'"!” that is,

¥, =RY,, (11)

the governing equation of the dynamic condensation matrix R can
be obtained from Eq. (10) as
R=A4[B. + B RY,n QY —An]  (12)

mm

To make the computation efficient, the following two equations are
usually used instead of Eq. (12):

R=A'[B., +B.RY,, V], Az — A, ] (13)
R=A.'[B,, +B.RB'Ax —A,,] (14)

where the reduced system matrices Ag and By are defined as
AR = Amm + RTAs'm + Ame + RTAmR (153)

By,=B8B,,+R"B,, +B,,R+R"B,R (15b)
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Because the governing equations (13) and (14) are nonlinear, it is
difficult to solve them directly. The iterative forms of these two
equationsfori =1,2,. .., are given by'

RO = A [(Bo + B ROV) PG DR 0) A" — A,
(16)

RY = A '[(B., +B,R V) (BE ) 'aC" D —4,,] a7

The initial approximation of the dynamic condensation matrix R
is given by!

0 —1 —K‘__YIK‘.,” 0
RO =-A'A,, = b 1 (18)
: 0 —-M'M,,
An alternative initial approximation, that is,
-K7'K,,, 0
RO — ss 1% (19)
0 —K;'K,»

was used by Rivera et al.!” It has the advantage that the calculation
of the inverse of matrix M, is avoided.

IV. Present Method

A. Subspace Iteration Method for Complex Eigenproblems

The subspaceiteration method is widely used for the computation
of a few smallest eigenvalues and eigenvectors of large eigenprob-
lems. The standard subspace iteration method, developed by Bathe
and Wilson,'? is a direct iterative method for symmetric matrices. It
combines a simultaneousinverseiteration and a Rayleigh-Ritz pro-
cedure. This standard method is extended to evaluate the eigenpairs
of nonclassically damped systems in what follows.

Choose a set of linearly independent 2n-dimensional vectors,
and construct a subspace ¥, " in which the columns are occupied
by the vectors. This subspaceis usually considered as an initial ap-
proximationof the eigenvectors.Fori =1, 2,. .., the following two
steps are applied to solve for the i + 1th approximationof eigenval-
ues and eigenvectors.

1) A set of new subspace XU *1 is obtained by simultaneous
inverse iteration, that is,

AX; "D =BY) (20)

If the iterations proceeded using XU +1) as the next estimation of the
subspace, the subspace would collapse to a subspace of dimension
one and only contains the eigenvector corresponding to the lowest
eigenvalue. Hence, the Rayleigh-Ritz procedure is adopted.

2) Compute the projections of matrices A and B in the subspace
spanned by X+ 1:

BV = (X(“’ ”)TBX(““ D
21

(i+1) _ i+1\7 i+1
ARt = (XTD) AXGY,

Then solve for the projected eigenproblem given by

A(;;+1>Q~<i+1> :Bg+1>Q~<i+1>[\<i+1> (22)
where Q¢+ D and A" are the (i + Dih approximate eigenvector
andeigenvaluematrices of the projectedmodel. Finally, the (i + 1)th
approximate eigenvector matrix is given by

‘i’fjﬁ n _ Xff,+ 1)Q(z‘+ 1) (23)

. gt . .
Eigenvector matrix \I’Z is used to calculate the next approximate
eigenvalues and eigenvectors until they converge, that is,

’)\(f+l)’ = &, J=LZ ..., p=m
J

If the first p eigenvalues converge, exit the loop.

B. Governing Equation for Dynamic Condensation Matrix

If the total degrees of freedom of a model are divided into the
master and slave degrees of freedom as mentioned earlier, Eq. (23)
can be rewritten in a partitioned form as

i +1) (+D i+
[‘P ]_[X 0" } 25
i+ | i+1) A6 +1
W XiQu+h

where submatrices ‘i—‘;; Y (2m x 2m) and q‘il; Y (25 x 2m) are
defined as

(i +1) i+ 1D)*
P+ Fon (¥5.°)
mm - . . . * . *
(i+D i+ G +1) Q+1D
POl (P (@)
[ G +1) G +D)*
o~ G +1) \lem (\lem )
i = (26)

'mm

Pi+Hoi+ (\I;g+1>)*(g<i+1>)*
According to the definition of the dynamic condensation matrix in
Eq. (11), one has

RU+D :\i;(i+1)(\i;(i+1))‘l 27)
Introducing Eq. (25) into Eq. (27) yields
RE+D :XAE_I;”+1>Q~<I'+1>(X’<:I":1>Q~<i+1>)—1 (28)
which can be expressed in concise form as
RU+D :X(i+1>(X(i+1>)‘l (29)

Itis shownclearly in Eq. (29) that the Rayleigh-Ritz procedure does
not affect the dynamic condensation matrix.
Equation (20) can be rewritten as

X0+D = PO (30)
in which matrix G is defined as
G=A"'B 31)
By considering Eq. (3), one has
G = |:E Fi| (32)
I 0
E=-K'C, F=-K'M (33)

Iand 0 (n x n) are a unity and a zero matrix, respectively. Based on
the division of the degrees of freedom, Eq. (30) may be expressed
in partitioned form as

X5 G, G, |[PY,
' = o (34)
XG+n Gy G | WO
where the submatrices G @Qm x 2m), G, (2m x 2s), G»1(2s X 2m),
and G,,(2s x 2s) are defined as

G _ Emm me G _ GT _ Ems‘ FIMX
11— I,,,m 0 ) 12 — Uy — 0 0
G _ EX.\' FX.\' (35)
2ol o0
Using the definition of dynamic condensation matrix in Eq. (11),
one has
o, I g0
[\if@} B [R@} For e
By introducing Eq. (36) into Eq. (34), we have
XG+D G G I ...
= N3 37
|:X$lm+ 1)i| |:G21 Gy | [RO] ™ @D
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Equation (37) is equivalent to the following two equations:

X0 = (G + Gk ) H, (382

XU+ = (G + GRD) P, (38b)
Substituting Eq. (38) into Eq. (29) results in
RU*D = (Gy + GR") (G, + G,RV) ™ (39)
If we let i = —1 and R“" =0 in Eq. (39), we have
R = G, G;} (40)

Equations (39) and (40) are the governingequations of the dynamic
condensation matrix. It can be seen clearly from them that the dy-
namic condensationmatrix has nothing to do with the system matri-
ces and eigenpairsof the reduced model. Therefore, itis unnecessary
to calculate them during iteration, which makes the present method
very computationally efficient.

C. Iterative Schemes for the Dynamic Condensation Matrix
Classical Iterative Scheme
The iterative procedure used in Refs. 1 and 17 is implemented to
solve for the dynamic condensation matrix governed by Eq. (39).
The main steps are as follows:
1) Choose the master degrees of freedom, and compute all of the
submatrices to be used in the following.
2) Calculate the initial approximation of the dynamic condensa-
tion R by using Eq. (40).
3)Fori=0,1,2,3,...,begin the iteration:
a) Calculate the (i + 1)th approximate dynamic condensation
matrix R+ using Eq. (39).
b) Construct the system matrices of the reduced model using
Eq. (15).
¢) Solve for the eigenproblem of the reduced model:
AU = B GG @
d) Check the convergence for the real and imaginary parts of
the eigenvalues by using the following convergent criterion:
’a;i +1 a;i)’
,p=m  (42)

] <e, j=12...
J

where o denotes the real and imaginary parts of the complex eigen-
values, respectively. If the first p eigenvalues converge, exit the
loop.

4) Output the dynamic condensation matrix RY " and system
matrices A(Rf " and B(Rf "1 of the reduced model.

Inthisiterativescheme,the eigenvaluesas well as the eigenvectors
are computedduringiteration. Actually, thisis justone applicationof
the dynamic condensationtechnique. What is much more important
in vibration engineering is that a reduced model (A; and By) is
defined by this technique. The reduced model has the following two
special characteristics that make it very useful in dynamic analysis
such as test-analysis model correlation, active vibration, etc. 1) The
eigenvalues and eigenvectors of the reduced model are very close
to those that result from the full model. Hence, the reduced model
can representthe full model in that frequencyrange. 2) The reduced
model is defined in the subspace of the original space used by the full
model. This means each coordinate of the subspace has its physical
meaning.

Clearly, there are three types of major computational work within
eachof the iterations. They are to evaluatethe (i + 1)th approximate
dynamic condensation matrix RV ", to construct the (i + 1)th ap-
proximate system matricesA(Rf *D and B(R’ *1 of the reduced model,
and to solve for the eigenproblem of the reduced model. Assume
the computational work for these three typesare W1, W2, and W3,
respectively.The total work for one iterationis W1 + W2 + W3 and
k(W1 + W2+ W3) for k iterations.

IfEq. (40) in step 2 is replaced by Eqs. (18) and (19) and Eq. (39)
in step 3a is replaced by Egs. (17) and (16), the iterative schemes

used by Qu' and Rivera'” result, respectively. Therefore, the com-
putational work used in the iterative schemes'!” is very close to that
used in the preceding scheme.

As shown in Eq. (31), because the matrix G is defined by the
system matrices of the full model directly, the dynamic condensation
matrix is only dependenton itself, as shown in Eq. (39). This means
the system matrices as well as the eigenpairs of the reduced model
have no effect on the iteration. We do not have to compute them
within every iteration. Therefore, the following iterative scheme is
presented.

Iterative Scheme 1
1) Choose the master degrees of freedom and compute all the
submatrices to be used in the following.
2) Calculate the initial approximation of the dynamic condensa-
tion R by using Eq. (40).
3)Fori =0,k, 2k, 3k,..., (k> 1), begin the iteration:
a) Calculate the (i + k)th approximate dynamic condensation
matrix RY % by iterating Eq. (39) for k times.
b) Calculate the system matrices of the reduced model using
Eq. (15).
¢) Solve for the eigenproblem of the reduced model
AR = BT OGO (43)
d) Check the convergence for the real and imaginary parts of
the eigenvaluesusing the convergentcriterion
i+k i
o)

’a<i+k)’ < ¢y, j=1L2,....p <m (44)
j

If the first p eigenvalues converge, exit the loop.

4) Output the dynamic condensation matrix RY ™% and system
matrices A(Rf "9 and B(Rf ™1 of the reduced model.

Clearly, iterative scheme 1 becomes the classical iterative scheme
if k = 1 in the former. Because the computation of the system matri-
ces of the reduced model and the correspondingeigenproblemdoes
not affect the dynamic condensationmatrix, the dynamic condensa-
tion matrix R“ % and the system matrices A 7" and B{ " of the
reduced model resulting from the two schemes should be identical.

As mentioned earlier, the major computational work for obtain-
ing the reduced model (A} """ and B ") is k(W1 + W2+ W3).
It is kW14 W2+ W3 if iterative scheme 1 is used. Clearly,
(k— 1)(W2 4 W3) computational work may be saved for k iter-
ations and (k — 1)(W2 4+ W3)/k for one iteration. Here, W3 is the
computation of the eigenproblem of the reduced model in state
space. As we know, the computation of the eigenpairs is usually
very expensive, especially when the size of the reduced model or
the number of the master degrees of freedom is large.!” Therefore,
the computational effort required in iterative scheme 1 is much less
than the classical iterative scheme and the previous schemes'!” if
k > 1 and the size of the reduced model is big.

In iterative scheme 1, the system matrices of the reduced model
and the correspondingeigenpairsare still to be computed after a cou-
pleofiterations. Hence, anotheriterativescheme, iterative scheme 2,
is presented.

Iterative Scheme 2
Steps 1 and 2 are similar to scheme 1.
3)Fori=0,1,2,3,...,begin the iteration:
a) Calculate the (i + 1)th approximate dynamic condensation
matrix R?*® by using Eq. (39).
b) Check the convergence by using criterion

(r;i-%— 1))7 0]

‘—jjfg, j=1,2,...,m (45)
N

error=1—

where r;i) and r(].i+ D are the jth column vectors of the ith and
(i + 1)th approximate dynamic condensation matrix, respectively.

If the m column vectors converge, exit the loop.
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4) Calculate the system matrices of the reduced model.

5) Solve for the eigenproblem of the reduced model if necessary.

6) Output the dynamic condensationmatrix and system matrices.

In this scheme, the system matrices of the reduced model are
only to be calculated after the dynamic condensation matrix con-
verges. The eigenpairsare to be computed only when it is necessary.
Therefore, this schemeis a little more computationallyefficient than
scheme 1.

D. Discussion on the Convergence

Scheme 2 is reproduced in a form that would be convenient for
the discussion of the convergence.

1) Suppose the dynamic condensation matrix is a zero matrix,
and construct subspace X, as

X—I—I (46a)
m_R—O a

2) Calculate the initially approximate dynamic condensationma-
trix by using the following two equations:

X0 = Lo =A"'BX 46b
m ngm) - m ( 6 )
RO =x9(x)" (460)

3)Fori=0,1,2,...,begin the iteration. According to Eq. (29),
the (i + 1)th approximatecondensationmatrix can be obtained from
the following two equations:

XitD =A"'Bx® (46d)

RU+D ZXSHH)(X(HI))_I (46e)

mm

The following steps are similar to those in scheme 2. Clearly,
Eqgs. (46¢) and (46¢) are equivalent to Egs. (40) and (39).
Suppose the subspace X,, can be expressed as

X, = ¥D 47)

where D is a coefficient matrix of 2n x 2m. Introducing Eq. (47)
into Eq. (46b) results in

X9 =A"'BYD (48)

When the orthogonalities of the eigenvector matrix (5) are consid-
ered, Eq. (48) can be written as

X =¥Q D 49)
Equation (49) can be partitioned as
X070 [P s 1[Qh 0 ] [Dun
g i = (50)
X Y, P.lLo Q}llDw

which is equivalentto the following two equations:

X,(,?,)n = \ilmmg,;,l,, D, + \ilmxﬁ;yll)xm (51a)
Xg(r]rz = \i{\‘m ﬁ;yln Dmm + \i{v.vé;yll)xm (5 lb)

Introducing Eq. (51) into Eq. (46¢) leads to
R(O) = (\i{\'lﬂﬁ_l D”I”I + \?&&QRID&m)

'mm

x (¥, 20 D, + 9,91 D) (52)

'mm

Based on the same derivative procedure, the ith approximation of
the dynamic condensation matrix is

R(i) = (\ilxmﬁ;lm_ lem + \ilnéx_‘l B le'm)

'mm

x (¥,,Q::-'D,,, +¥,.Q7"'D,,) " (53)

Because the moduli of all of the diagonal elements in matrix f)m
are greater than those in matrix €2,,,,,, one has

RY > (9,9, ' D) (0,2, ' D)~ (i — 00)
(54)
that is,
O N (i —> o0) (55)

in which ‘i’m‘i’;:” is the exact value of the dynamic condensation
matrix.

V. Numerical Examples

Two factors affect the efficiency of an iterative method. One is the
computational effort at each iteration, and the other is the conver-
gence rate of each iteration. As discussed in the preceding section,
(k — 1)(W2 4 W3)/k computational work may be saved foreach it-
erationifiterativescheme 1 ratherthan the classicaliterativescheme
or previous schemes'!7 is used. The computational work of the it-
erative scheme 2 is a little less than scheme 1. For the first factor,
the proposed method or scheme is, therefore, superior to the pre-
vious approaches.*!” The remainder is the second factor. Because
it is very difficult to discuss this factor theoretically, two numerical
examples are included. We will compare the results of the reduced
models obtained from difference condensationapproachesiteration
by iteration. Therefore, only the classical iterative scheme will be
applied.

A. Mass-Damper-Stiffness System
A discrete mass-damper-spring system, shown in Fig. 1, is
considered. In this system, m; =1.0 kg, ¢; =0.5{ N-s/m, k; =
200i N/m,i=1,2,...,20.It has a total of 20 degrees of freedom.
The lower four complex eigenvalues are —0.017635+ ;j3.75602,
—0.093032+£ j8.62651,—0.229146+ j13.5375,and —0.426827+
j18.4737. The 1st, 6th, 11th, and 16th degrees of freedom are se-
lected as the master degrees of freedom when condensed. The errors
of the eigenvalues of the reduced model in the former 10 iterations

are listed in Table 1. The error is defined as
a;’) —of

ji=12....m (56)

in which a;’) and of are the real/imaginary parts of the ith approxi-
mate and exact eigenvalues, respectively. The subscriptdenotes the
Jjth eigenvalue. Here, the eigenvalues are just used to demonstrate
how the reduced model closes to the full model and are not used for
eigenvaluesthemselves.

As shown clearly from the results in Table 1, the errors of the
initial approximations are very large, especially for the real parts
of the eigenvalues. All of the errors of the real parts are greater
than 100%. Clearly, the corresponding eigenvalues or the reduced
model is meaningless. The real parts of the eigenvalues resulting
from the reducing model converge to the exact result quickly when
iterationis applied. After 10 iterations, the errors reduce to less than
1000th of the initial approximations. The imaginary parts of the
eigenvaluesconvergeto the exactresultconsistentlyduringiterating.
These errors are all larger than zero, which means the frequenciesof
the reduced model are larger than the exact result, and the reduced
model closes to the full model from above. After 10 iterations, the
reduced model Ay and By, which is describedby the 1st, 6th, 11th,
and 16th degrees of freedom, can accuratelyrepresentthe full model
in low-frequency range with the highest error 0.5%. Therefore, it
can be used directly in the test-analysis model correlation, active
vibration control, and so on.

m ko m Kk m3 ks ko Py ky
I ‘ &) ” C, l“ C3 Cio L;‘ Cy

Fig.1 Schematic of a mass-damping-spring system.
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Table 1 Errors of the eigenvalues resulting from the present method (first example)

Eigenvalue 1 Eigenvalue 2 Eigenvalue 3 Eigenvalue 4
Iteration Real Imaginary Real Imaginary Real Imaginary Real Imaginary
0 2.1512552  0.7797515 1.6283808  0.6336569 2.5893398  0.9139061  3.4783698  1.1405928
1 0.0376853  0.0194171 0.0740226  0.0386519 0.1735704  0.0908992  0.7918929  0.3585053
2 0.0009842  0.0005183 0.0094122  0.0049531 0.0281767  0.0153288  0.3999646  0.1909331
3 0.0000295  0.0000162 0.0015202  0.0008250 0.0085762  0.0046863  0.2529920  0.1248303
4 0.0000008  0.0000005 0.0002289  0.0001341 0.0029887  0.0017053  0.1596758  0.0826897
5 0.0000001  0.0000000 0.0000305  0.0000206 0.0010016  0.0006262  0.0971780  0.0536903
6 0.0000001  0.0000000 0.0000034  0.0000030 0.0003061  0.0002237  0.0567344  0.0341650
7 0.0000001  0.0000000 0.0000002  0.0000004 0.0000816  0.0000776  0.0316483  0.0214215
8 0.0000001  0.0000000  —0.0000001  0.0000001 0.0000168  0.0000263  0.0166838  0.0133019
9 0.0000001  0.0000000  —0.0000001  0.0000000 0.0000011  0.0000088  0.0080867  0.0082104
10 0.0000001  0.0000000  —0.0000001  0.0000000  —0.0000014  0.0000029  0.0033505 0.0050493

Table 2 Errors of the eigenvalues resulting from the methods in Refs. 1 and 17 (first example)

Eigenvalue 1 Eigenvalue 2 Eigenvalue 3 Eigenvalue 4
Iteration Real Imaginary Real Imaginary Real Imaginary Real Imaginary
0 2.1838096  0.7842803 1.7100118  0.6460477  2.7415020 0.9335364  3.7014501  1.1661395
1 0.0401281  0.0198662 0.0816702  0.0400288  0.2000310  0.0954278  0.8787399  0.3703498
2 0.0010520  0.0005277 0.0100792  0.0050451 0.0316698  0.0158046  0.4238226  0.1936800
3 —0.0001706  0.0001661  —0.0016805 0.0016146  0.0073571  0.0091645  0.2004699  0.1397557
4 0.0000087  0.0000939  —0.0007934  0.0007919  0.0041386  0.0062445  0.1254392  0.1085293
5 0.0000280  0.0000594  —0.0002532  0.0004676  0.0025620  0.0044749  0.0793301  0.0868355
6 0.0000240  0.0000392  —0.0000509  0.0003051  0.0017376  0.0032970  0.0549462  0.0712837
7 0.0000183  0.0000264 0.0000148  0.0002105 0.0012408  0.0024765  0.0400760  0.0594741
8 0.0000136  0.0000181 0.0000345  0.0001507  0.0009278  0.0018912  0.0309810  0.0503048
9 0.0000104  0.0000127 0.0000388  0.0001109  0.0007208  0.0014663  0.0247807  0.0430165
10 0.0000079  0.0000090 0.0000376  0.0000834  0.0005791  0.0011532  0.0204588  0.0371398

Table 3 Real parts of the complex frequencies (rad/s) resulting from the present method (second example)

Iteration Frequency 1 Frequency 2 Frequency 3 Frequency 4 Frequency 5 Frequency 6 Frequency 7 Frequency 8 Frequency 9 Frequency 10

0 —0.351257 —0.459752  —3.35444  —-20.2196

2 —0.334284 —0.454051 —0.322134 —6.71912
4 —0.334283 —0.454051 —0.321728 —6.48547
6 —0.334283 —0.454051 —0.321728 —6.46571
8 —0.334283 —0.454051 —0.321728 —6.46483
10 —0.334283 —0.454051 —0.321728 —6.46483
12 —0.334283 —0.454051 —0.321728 —6.46483
Exact —0.334283 —0.454051 —0.321728 —6.46483

—29.4092

—10.3897
—9.77570
—9.76763
—9.76748
—9.76748
—9.76748
—9.76748

—16.2522 —54.9616 —57.6414  —154.475 —61.6006
—7.67817 —7.86572  —19.8781 —-21.5751 —37.6786
—6.77129 —7.50688  —18.1923 —16.3887 4.99675
—6.72992 —7.46009  —12.5756 —17.9246  —17.3053
—6.72766 —7.49449  —13.3257 —17.8943  —16.4704
—6.72764 —7.49304  —12.9869 —17.8887 —16.4175
—6.72764 —7.49290 —12.9500 —17.8875  —16.4105
—6.72764 —7.49290 —12.9449 —17.8871 —16.4082

For comparisonpurpose, the errors resulting from use of the meth-
ods in Refs. 1 and 17 are listed in Table 2. Although there is little
difference between the errors of the initial approximationsresulting
from the two kinds of methods, the errors obtained from the present
method reduce much more quickly than those from methods of
Refs. 1 and 17.

The damping matrix in this exampleis proportionalto the stiffness
matrix because of the particularselection of the damping matrix. As
mentioned in the Introduction, the dynamic condensation method
for undamped systems can be used to solve the problem directly.
Here, we want to show that the dynamic condensationapproachesfor
nonclassicallydampedsystems canalso be applied to proportionally
damped models and that the present method is more efficient and
accurate than the approaches in Refs. 1 and 17 for proportionally
damped models.

B. Floating Raft Isolation System

For the second example, the floating raft isolation system de-
scribed in Ref. 20 is considered. The machines to be isolated are
denoted by m; =100 kg and m, =120 kg. A and B are rectangular
platesand denotethe raft frame and base, respectively. Their lengths,
widths, and thicknesses are 1.2, 0.8, and 0.02 m and 2.8, 0.8, and
0.04 m, respectively. Their modulus of elasticity is 2.0E11 N/m?
and mass density is 7800 kg/m®. The two short sides of plate B
are simply supported, and the two long sides are free. The four
sides of plate A are all free, and k; = 1.0ES5 N/m, k, =5.0E5 N/m,

¢; =100N-s/m?, andc, =200N - s/m>. The raft frame and the base
arediscretizedusing the finite element method. They are dividedinto
24 and 14 rectangular elements, respectively. The definition of the
elements, nodes, and the connections with other components may
be found in Ref. 20. The isolation system has a total of 179 degrees
of freedom under this discretization.

The degrees of freedom associated with the two machines, and
the translational degrees of freedom at nodes 2, 4, 8, 9, 14, 22 in
the raft and at nodes 9 and 14 in the base are selected as the master
degrees of freedom when the dynamic condensationis applied. All
of the frequencies of the reduced model in former 12 iterations are
listed in Tables 3 and 4. The results obtained from the methods in
Refs. 1 and 17 are listed in Tables 5 and 6 for comparison purpose.
In Tables 3-6 boldface numbers denote the significant digits. Ex-
act indicates the results obtained from the full model. Because the
reduced model is derived from the full model, it is reasonable to
consider the full model as exact. Again, the results show that the
proposed method is efficient for nonclassically damped systems.
Although the reduced model only has 10 degrees of freedom, which
is aboutone 18th of the full model, it is a good representationof the
full model in frequency range (0, 500) rad/s after 10 iterations.

Because the lower eigenvaluesusually converge much faster than
the higher, the 9th and 10th eigenvalues of the reduced model are
considered here. The errors of these two eigenvalues computed for
four cases are shown in Figs. 2 and 3, respectively.In Figs. 2 and 3,
case A denotes the results obtained from the methods in Refs. 1
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Table4 Imaginary parts of the complex frequencies (rad/s) resulting from the present method (second example)

Iteration Frequency 1 Frequency 2 Frequency 3 Frequency 4 Frequency 5 Frequency 6 Frequency 7 Frequency 8 Frequency 9 Frequency 10

0 27.6811 30.8131 193.028 362.290 510.015 673.639 732.313 1076.46 1922.65 2986.84

2 27.4784 30.7270 67.4832 227.711 231.199 242250 347.848 555.324 565.686 1326.30

4 27.4784 30.7270 67.4671 226.812 227.922 238772 340.325 534.822 542.570 978.800
6 27.4784 30.7270 67.4671 226.761 227.902 238.649 337.011 491.904 533.91 546.799
8 27.4784 30.7270 67.4671 226.759 227.902 238.642 335.960 420.814 533.940 542.968
10 27.4784 30.7270 67.4671 226.759 227.902 238.642 335.931 418.423 533.935 542.839
12 27.4784 30.7270 67.4671 226.759 227.902 238.642 335.931 418.327 533.934 542.828
Exact 27.4784 30.7270 67.4671 226.759 227.902 238.642 335.931 418.319 533.934 542.827

Table 5 Real parts of the complex frequencies (rad/s) resulted from methods of Refs. 1 and 17 (second example)

Iteration Frequency 1 Frequency 2 Frequency 3 Frequency 4 Frequency 5 Frequency 6 Frequency 7 Frequency 8 Frequency 9 Frequency 10

0 —0.352946 —0.460291 —42.6293  —245.045 —281.990 —-165.917 —617.559 —589.828 —978.437 —2717.549

2 —0.334284 —0.454051 —0.322140 —6.84264  —10.6025 —7.83154 —8.16662  —19.2819 —22.4687 —34.6759
4 —0.334283 —0.454051 —0.321539 —6.50874 —9.76172 —6.76654 —7.52963  —18.0864 —16.3650 5.53147
6 —0.334283 —0.454051 —0.321560 —6.47890 —9.75627 —6.73457 —7.42061  —13.0259 —17.9903 —18.7647
8 —0.334283 —0.454051 —0.321574 —6.47562 —9.75746 —6.73192 —7.43290 —13.0361 —17.9497 —16.6137
10 —0.334283 —0.454051 —0.321587 —6.47423 —9.75834 —6.73122 —7.44992  —13.0567 —17.9439 —16.5342
12 —0.334283 —0.454051 —0.321597 —6.47318 —9.75889 —6.73066 —7.45960  —13.0879 —17.9428 —16.5134
Exact —0.334283 —-0.454051 —0.321728 —6.46483 —9.76748 —6.72764 —7.49290  —12.9449 —17.8871 —16.4082

Table 6 Imaginary parts of the complex frequencies (rad/s) resulted from methods of Refs. 1 and 17 (second example)

Iteration Frequency 1 Frequency 2 Frequency 3 Frequency 4 Frequency 5 Frequency 6 Frequency 7 Frequency 8 Frequency 9 Frequency 10

0 27.7031 30.8217 648.039 1301.90 1783.21 2147.30 2568.93 3541.74 4999.02 6493.01

2 27.4784 30.7270 67.4935 228.193 233.059 242.776 355.506 559.382 566.196 1291.61

4 27.4784 30.7270 67.4689 226.932 228.368 238978 343.999 537.682 544.449 998.693
6 27.4784 30.7270 67.4688 226.842 228.288 238.850 339.298 524.540 536.245 554.278
8 27.4784 30.7270 67.4688 226.831 228.262 238.828 337.788 445774 535.780 544.407
10 27.4784 30.7270 67.4688 226.825 228.245 238.817 337.463 436.950 535.571 544.096
12 27.4784 30.7270 67.4688 226.821 228.230 238.809 337.271 433.454 535.445 543.985
Exact 27.4784 30.7270 67.4671 226.759 227.902 238.642 335.931 418.319 533.934 542.827
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Fig.2 Errors of the ninth eigenvalue for the four cases. Fig.3 Errors of the 10th eigenvalue for the four cases.
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and 17. Cases B, C, and D result from the proposed method for
k=1, 2,and 3, respectively.Clearly, the convergenceof the present
methodis much faster than the methodsin Refs. 1 and 17. It becomes
faster with increasing k.

VI. Conclusions

Based on the subspace iteration method for nonclassically
damped systems, an efficient approach for the dynamic conden-
sation was derived. Two iterative schemes have been presented for
this method. The proof of the convergence of these two schemes is
very simple, whereas it is very difficult for the methods in Refs. 1
and 17. Two numerical examples were included to demonstrate the
convergence of the present approach.

On one hand, the dynamic condensation matrix is independent
of the system matrices and eigenproblem of the reduced model.
Hence, it is unnecessary to calculate them at each of iterations as
showniniterativeschemes 1 and 2. Significantcomputationaleffort,
about (k — 1)(W2 4 W3)/k, may be saved foreach iteration. On the
other hand, even though the classical iterative scheme is used in the
two examples, the convergence of the present approach is much
faster than with the methods in Refs. 1 and 17, especially when
the approximate values of the reduced model are close to those
of the full model. Therefore, the proposed method is much more
computationally efficient than the methods in Refs. 1 and 17.

The reduced model can represent the full model in the low-
frequency range after several iterations. Although several schemes
for the selection of the master degrees of freedom can be used to ac-
celerate the convergence,they do not work for many cases.! Further-
more, these schemes are usually very computationally expensive.
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