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Dynamic condensation methods have been widely used to reduce the number of degrees of freedom of � nite
element models. Most of them, however, are valid for undamped systems. An ef� cient iterative approach for the
dynamic condensation of nonclassically damped systems is proposed. The classical subspace iteration method for
undamped models is extended to nonclassically damped models. Then, a governing equation for the dynamic con-
densation matrix in state space is derived from the extended subspace iteration. Two iterative schemes are proposed
to solve the governing equation. Because the dynamic condensation matrix is independent of the system matrices
and the eigenpairs (eigenvalues and eigenvectors) of the reduced model, it is unnecessary to compute them in every
iteration. This makes the present method much more computationallyef� cient than those approaches proposed in
the past. The convergence of the proposed approach is also proven. Two numerical examples, one discrete mass–

damper–spring system and one � oating raft isolation system, are included to demonstrate the convergence of the
present method. The results show that the convergence of the present method is much faster than the previous
approaches, especially when the dynamic characteristics of the reduced model are very close to the full model.

Nomenclature
A = (2n £ 2n) system matrix of the full model in state

space de� ned in Eq. (3)
AR = (2m £ 2m ) system matrix of the reduced model in

state space de� ned in Eq. (15a)
B = (2n £ 2n) system matrix of the full model in state

space de� ned in Eq. (3)
BR = (2m £ 2m ) system matrix of the reduced model in

state space de� ned in Eq. (15b)
C = (n £ n) damping matrix of the damped system
I = unity matrix
K = (n £ n) stiffness matrix of the damped system
k = integer, k > 1
M = (n £ n) mass matrix of the damped system
m = number of low eigenpairs to be considered;number

of the master degrees of freedom
n = number of the total degrees of freedom of the

full model
QQ = (2m £ 2m ) eigenvector matrix of the projected

model de� ned in Eq. (22)
R = (2s £ 2m) dynamic condensationmatrix
s = number of the slave degrees of freedom
X = displacement response vector; new subspace de� ned

in Eq. (20)
PX = velocity response vector
RX = acceleration response vector
" = error tolerance of eigenvalue used in Eq. (24)
"1 = error tolerance of the real and imaginary parts of the

complex eigenvalue used in Eqs. (42) and (44)
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"2 = error tolerance of the column vector in the dynamic
condensationmatrix used in Eq. (45)

QK = (2m £ 2m) eigenvalue or spectral matrix of the
projected model de� ned in Eq. (22)

¸
.i/
j = the i th approximation of the j th eigenvalue

W = (n £ n) submatrix of the eigenvector matrix
de� ned in Eq. (4)

QW = (2n £ 2n) eigenvector matrix de� ned
in Eqs. (2) and (4)

X = (n £ n) submatrix of the eigenvalue or spectral
matrix de� ned in Eq. (4)

QX = (2n £ 2n) eigenvalue or spectral matrix de� ned
in Eqs. (2) and (4)

Subscripts

j = j th eigenvalue
m = m columns or rows; parameters associate with the

master degrees of freedom
p = system matrices of the projected model
R = parameters of the reduced model
s = parameters associate with the slave degrees of

freedom

Superscripts

i ¡ 1, i , = i ¡ 1th, i th, and i C 1th approximation
i C 1
T = matrix transpose
0 = initial approximation
* = complex conjugate

I. Introduction

A S structures to be solved for dynamic characteristics become
larger or more complex, the computing time and the corre-

sponding costs increase drastically.Hence, various techniqueshave
been used to reduce the size of the full systems or the dimension of
the structural matrices involved in the formulation. Dynamic con-
densation, as an ef� cient technique for model reduction, was � rst
applied to large � nite element models for faster computation of the
natural frequencies and mode shapes. In recent years, it has been
used in test-analysismodel correlation,vibration control, structural
dynamic optimization, dynamic modeling, and so on.1
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SinceGuyan2 and Irons3 � rst proposedthis technique,many kinds
of algorithms4¡15 have been developed to improve the accuracy of
condensation.Among them, the iterative methods are usually more
ef� cient than others because the dynamic condensation matrix in
these approaches is updated repeatedlyuntil the desired convergent
values are obtained.16 However, most of the dynamic condensation
methods proposed in the past have been restricted to undamped
models. For proportionallydamped systems, the damping does not
affect the eigenvectors on which the dynamic condensation matrix
depends.Therefore,the dynamiccondensationmatrix de� ned for an
undamped model is also valid for the correspondingproportionally
damped model. Unfortunately, there are a lot of situations in which
the proportional damping assumption is invalid. Examples of such
cases are the structuresmade up of materials with differentdamping
characteristics in different parts, structures equipped with passive
and active control systems, and structures with layers of damping
materials.17

An iterative method for dynamic condensation of viscously
damped systems was proposed by Qu1 in 1998. In this method, two
governingequationsfor the dynamiccondensationmatrix,which re-
lates the eigenvectorsassociatedwith themasterandslavedegreesof
freedom in state space, were derived. Because the eigenvectors and
eigenvalues of the reduced model are not included in the equation,
it is unnecessary to solve for the eigenproblem in every iteration.
Also, this method was used to the active vibration control of high
buildings with active tuned mass dampers.

Most recently, a dynamic condensation approach applicable to
nonclassically damped structures was proposed by Rivera et al.17

This approach is a generalizationand extensionof the condensation
approach in Ref. 6. In this method, the eigenpropertiesobtained in
an iterative step are used to improve the condensationmatrix in the
following iterative step.

In this paper, the standard subspace iteration method for un-
damped models18 is � rst extended to the nonclassically damped
systems. A governing equation for the dynamic condensation ma-
trix is then derived based on the extended method. Two iterative
schemes are proposed to solve the governing equation. The present
method has three advantages: 1) The convergence is much faster
than the methods in Refs. 1 and 17, especially when the approxi-
mate values of the reduced model are close to the full model. 2) A
full proof of the convergencecan be made simply. 3) Because there
are no parameters of the reduced model in the governing equation
of the dynamic condensation matrix, it is unnecessary to calculate
them during every iteration. This makes the iterative scheme much
more computationally ef� cient, especially when the number of the
master degrees of freedom is large.

II. Basic Theory of Complex Modes
The dynamic equilibrium of an n-degree-of-freedomnonclassi-

cally damped system can be expressed in a matrix form as

M RX.t/ C C PX.t/ C KX.t/ D F.t/ (1)

where the mass matrix M, damping matrix C, and stiffness matrix
K are assumed to be positive de� nite, positive semide� nite, and
positive semide� nite, respectively. The corresponding eigenvalue
problem of this system may be written in state space as

A QW D B QW QX (2)

in which the system matrices A and B are real, symmetric, and
de� ned as

A D
µ

K 0

0 ¡M

¶
; B D

µ
¡C ¡M
¡M 0

¶
(3)

The complex conjugate eigenvector matrix QW and the eigenvalue
or spectral matrix QX have the forms

QW D
µ

W W ¤

W X W ¤ X ¤

¶
; QX D

µ
X 0

0 X ¤

¶
(4)

Here the eigenvaluesin matrix QX are arrangedin an ascendingorder.
The eigenvector matrix is assumed to have been normalized such
that

QW T A QW D QX ; QW T B QW D I (5)

If only the lower m eigenpairs are considered in Eq. (2), one has

A QW m D B QW m
QX mm (6)

or in an expanded form
µ

K 0

0 ¡M

¶ µ
W m W ¤

m

W m X mm W ¤
m X ¤

mm

¶

D
µ

¡C ¡M
¡M 0

¶ µ
W m W ¤

m

W m X mm W ¤
m X ¤

mm

¶ µ
X mm 0

0 X ¤
mm

¶
(7)

in which the dimensionsof submatrices W m and X mm are n £ m and
m £ m, respectively.

III. Iterative Methods of Qu1 and Rivera17

In the dynamic condensationtechnique, the total degrees of free-
dom n of the full model are usually divided into the master degrees
of freedom m, which will be retained in the reduced model, and the
slave degrees of freedom s, which will be omitted. Based on this
division, Eq. (6) can be rewritten in a partitioned form as

µ
Amm Ams

Asm Ass

¶"
QW mm

QW sm

#
D

µ
Bmm Bms

Bsm Bss

¶ "
QW mm

QW sm

#
QX mm (8)

where the submatrices are given by

Amm D
µ

Kmm 0

0 ¡Mmm

¶
; Ams D AT

sm D
µ

Kms 0

0 ¡Mms

¶

Ass D
µ

Kss 0

0 ¡Mss

¶
; Bmm D

µ
¡Cmm ¡Mmm

¡Mmm 0

¶

Bms D BT
sm D

µ
¡Cms ¡Mms

¡Mms 0

¶
; Bss D

µ
¡Css ¡Mss

¡Mss 0

¶

QW mm D
µ

W mm W ¤
mm

W mm X mm W ¤
mm X ¤

mm

¶
; QW sm D

µ
W sm W ¤

sm

W sm X mm W ¤
sm X ¤

mm

¶

QX mm D
µ

X mm 0

0 X ¤
mm

¶
.9/

Expanding the lower part of Eq. (8) and rearrangingthe result yields

QW sm D A¡1
ss .Bsm

QW mm
QX mm C Bss

QW sm
QX mm ¡ Asm

QW mm/ (10)

According to the de� nition of the dynamic condensation matrix of
nonclassicallydamped systems,1;17 that is,

QW sm D R QW mm (11)

the governing equation of the dynamic condensation matrix R can
be obtained from Eq. (10) as

R D A¡1
ss

£
.Bsm C BssR/ QW mm

QX mm
QW ¡1

mm ¡ Asm

¤
(12)

To make the computation ef� cient, the following two equations are
usually used instead of Eq. (12):

R D A¡1
ss

£
.Bsm C BssR/ QW mm

QW T
mm AR ¡ Asm

¤
(13)

R D A¡1
ss

£
.Bsm C BssR/B¡1

R AR ¡ Asm

¤
(14)

where the reduced system matrices AR and BR are de� ned as

AR D Amm C RT Asm C AmsR C RT AssR (15a)

BR D Bmm C RT Bsm C BmsR C RT BssR (15b)



370 QU AND SELVAM

Because the governing equations (13) and (14) are nonlinear, it is
dif� cult to solve them directly. The iterative forms of these two
equations for i D 1; 2, : : : , are given by1

R.i / D A¡1
ss

£¡
Bsm C Bss R.i ¡ 1/

¢ QW .i ¡ 1/
mm

¡ QW .i ¡ 1/
mm

¢T
A.i ¡ 1/

R ¡ Asm

¤

(16)

R.i/ D A¡1
ss

£¡
Bsm C BssR.i ¡ 1/

¢¡
B.i ¡ 1/

R

¢¡1
A.i ¡ 1/

R ¡ Asm

¤
(17)

The initial approximation of the dynamic condensationmatrix R.0/

is given by1

R.0/ D ¡A¡1
ss Asm D

µ
¡K¡1

ss Ksm 0

0 ¡M¡1
ss Msm

¶
(18)

An alternative initial approximation, that is,

R.0/ D
µ

¡K¡1
ss Ksm 0

0 ¡K¡1
ss Ksm

¶
(19)

was used by Rivera et al.17 It has the advantage that the calculation
of the inverse of matrix Mss is avoided.

IV. Present Method
A. Subspace Iteration Method for Complex Eigenproblems

The subspace iterationmethod is widely used for the computation
of a few smallest eigenvalues and eigenvectors of large eigenprob-
lems. The standard subspace iteration method, developed by Bathe
and Wilson,18 is a direct iterativemethod for symmetric matrices. It
combines a simultaneousinverse iterationand a Rayleigh–Ritz pro-
cedure.This standardmethod is extended to evaluate the eigenpairs
of nonclassicallydamped systems in what follows.

Choose a set of linearly independent 2n-dimensional vectors,
and construct a subspace QW .0/

m in which the columns are occupied
by the vectors. This subspace is usually considered as an initial ap-
proximationof the eigenvectors.For i D 1; 2, : : : , the following two
steps are applied to solve for the i C 1th approximationof eigenval-
ues and eigenvectors.

1) A set of new subspace X.i C 1/
m is obtained by simultaneous

inverse iteration, that is,

AX.i C 1/
m D B QW .i/

m (20)

If the iterations proceededusing X.i C 1/
m as the next estimationof the

subspace, the subspace would collapse to a subspace of dimension
one and only contains the eigenvector corresponding to the lowest
eigenvalue.Hence, the Rayleigh–Ritz procedure is adopted.

2) Compute the projections of matrices A and B in the subspace
spanned by X.i C 1/

m :

A.i C 1/

P D
¡
X.i C 1/

m

¢T
AX.i C 1/

m ; B.i C 1/

P D
¡
X.i C 1/

m

¢T
BX.i C 1/

m

(21)

Then solve for the projected eigenproblemgiven by

A.i C 1/

P
QQ.i C 1/ D B.i C 1/

P
QQ.i C 1/ QK .i C 1/ (22)

where QQ.i C 1/ and QK .i C 1/
are the (i C 1)th approximate eigenvector

andeigenvaluematricesof the projectedmodel.Finally, the (i C 1)th
approximate eigenvector matrix is given by

QW .i C 1/
m D X.i C 1/

m
QQ.i C 1/ (23)

Eigenvectormatrix QW .i C 1/

m is used to calculate the next approximate
eigenvalues and eigenvectors until they converge, that is,

­­̧.i C 1/

j ¡ ¸
.i/
j

­­
­­̧.i C 1/

j

­­ · "; j D 1; 2; : : : ; p · m (24)

If the � rst p eigenvalues converge, exit the loop.

B. Governing Equation for Dynamic Condensation Matrix
If the total degrees of freedom of a model are divided into the

master and slave degrees of freedom as mentioned earlier, Eq. (23)
can be rewritten in a partitioned form as

µ QW .i C 1/
mm

QW .i C 1/
sm

¶
D

µ
X.i C 1/

mm
QQ.i C 1/

X.i C 1/
sm

QQ.i C 1/

¶
(25)

where submatrices QW .i C 1/

mm (2m £ 2m) and QW .i C 1/

sm (2s £ 2m) are
de� ned as

QW .i C 1/
mm D

2

4 W .i C 1/
mm

¡
W .i C 1/

mm

¢¤

W .i C 1/
mm X .i C 1/

mm

¡
W .i C 1/

mm

¢¤¡
X .i C 1/

mm

¢¤

3

5

QW .i C 1/
sm D

2

4 W .i C 1/
sm

¡
W .i C 1/

sm

¢¤

W .i C 1/
sm X .i C 1/

mm

¡
W .i C 1/

sm

¢¤¡
X .i C 1/

mm

¢¤

3

5 (26)

According to the de� nition of the dynamic condensation matrix in
Eq. (11), one has

R.i C 1/ D QW .i C 1/
sm

¡ QW .i C 1/
mm

¢¡1
(27)

Introducing Eq. (25) into Eq. (27) yields

R.i C 1/ D X.i C 1/
sm

QQ.i C 1/
¡
X.i C 1/

mm
QQ.i C 1/

¢¡1
(28)

which can be expressed in concise form as

R.i C 1/ D X.i C 1/
sm

¡
X.i C 1/

mm

¢¡1
(29)

It is shown clearly in Eq. (29) that the Rayleigh–Ritz proceduredoes
not affect the dynamic condensationmatrix.

Equation (20) can be rewritten as

X.i C 1/
m D G QW .i/

m (30)

in which matrix G is de� ned as

G D A¡1B (31)

By considering Eq. (3), one has

G D
µ

E F

I 0

¶
(32)

E D ¡K¡1C; F D ¡K¡1M (33)

I and 0 (n £ n) are a unity and a zero matrix, respectively.Based on
the division of the degrees of freedom, Eq. (30) may be expressed
in partitioned form as

µ
X.i C 1/

mm

X.i C 1/
sm

¶
D

µ
G11 G12

G21 G22

¶ µ QW .i/
mm

QW .i/
sm

¶
(34)

where the submatricesG11.2m £ 2m/, G12.2m £ 2s/, G21.2s £ 2m/,
and G22.2s £ 2s/ are de� ned as

G11 D
µ

Emm Fmm

Imm 0

¶
; G12 D GT

21 D
µ

Ems Fms

0 0

¶

G22 D
µ

Ess Fss

Iss 0

¶
(35)

Using the de� nition of dynamic condensation matrix in Eq. (11),
one has

µ QW .i /
mm

QW .i/
sm

¶
D

µ
I

R.i/

¶
QW .i/

mm (36)

By introducing Eq. (36) into Eq. (34), we have
µ

X.i C 1/
mm

X.i C 1/
sm

¶
D

µ
G11 G12

G21 G22

¶ µ
I

R.i/

¶
QW .i/

mm (37)
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Equation (37) is equivalent to the following two equations:

X.i C 1/
mm D

¡
G11 C G12R.i /

¢ QW .i/
mm (38a)

X.i C 1/
sm D

¡
G21 C G22R.i /

¢ QW .i/
mm (38b)

Substituting Eq. (38) into Eq. (29) results in

R.i C 1/ D
¡
G21 C G22R.i /

¢¡
G11 C G12R.i /

¢¡1
(39)

If we let i D ¡1 and R.¡1/ D 0 in Eq. (39), we have

R.0/ D G21G¡1
11 (40)

Equations (39) and (40) are the governingequationsof the dynamic
condensation matrix. It can be seen clearly from them that the dy-
namic condensationmatrix has nothing to do with the system matri-
ces and eigenpairsof the reducedmodel.Therefore, it is unnecessary
to calculate them during iteration, which makes the presentmethod
very computationallyef� cient.

C. Iterative Schemes for the Dynamic Condensation Matrix
Classical Iterative Scheme

The iterative procedureused in Refs. 1 and 17 is implemented to
solve for the dynamic condensation matrix governed by Eq. (39).
The main steps are as follows:

1) Choose the master degrees of freedom, and compute all of the
submatrices to be used in the following.

2) Calculate the initial approximation of the dynamic condensa-
tion R.0/ by using Eq. (40).

3) For i D 0; 1; 2; 3, : : : , begin the iteration:
a) Calculate the .i C 1/th approximate dynamic condensation

matrix R.i C 1/ using Eq. (39).
b) Construct the system matrices of the reduced model using

Eq. (15).
c) Solve for the eigenproblemof the reduced model:

A.i C 1/

R
QW .i C 1/

mm D B.i C 1/

R
QW .i C 1/

mm
QX .i C 1/

mm (41)

d) Check the convergence for the real and imaginary parts of
the eigenvalues by using the following convergent criterion:

­­®.i C 1/

j ¡ ®
.i/
j

­­
­­®.i C 1/

j

­­ · "1; j D 1; 2; : : : ; p · m (42)

where ® denotes the real and imaginary parts of the complex eigen-
values, respectively. If the � rst p eigenvalues converge, exit the
loop.

4) Output the dynamic condensation matrix R.i C 1/ and system
matrices A.i C 1/

R and B.i C 1/

R of the reduced model.
In thisiterativescheme,theeigenvaluesaswellas theeigenvectors

are computedduringiteration.Actually,this is justoneapplicationof
the dynamic condensationtechnique.What is much more important
in vibration engineering is that a reduced model (AR and BR ) is
de� ned by this technique.The reduced model has the following two
special characteristics that make it very useful in dynamic analysis
such as test-analysismodel correlation, active vibration,etc. 1) The
eigenvalues and eigenvectors of the reduced model are very close
to those that result from the full model. Hence, the reduced model
can represent the full model in that frequencyrange. 2) The reduced
model is de� ned in the subspaceof the originalspaceusedby the full
model. This means each coordinateof the subspace has its physical
meaning.

Clearly, there are three types of major computationalwork within
each of the iterations.They are to evaluatethe .i C 1/th approximate
dynamic condensation matrix R.i C 1/, to construct the .i C 1/th ap-
proximate system matrices A.i C 1/

R and B.i C 1/

R of the reduced model,
and to solve for the eigenproblem of the reduced model. Assume
the computationalwork for these three types are W1; W2; and W3,
respectively.The total work for one iterationis W1 C W2 C W3 and
k.W1 C W2 C W3/ for k iterations.

If Eq. (40) in step 2 is replacedby Eqs. (18) and (19) and Eq. (39)
in step 3a is replaced by Eqs. (17) and (16), the iterative schemes

used by Qu1 and Rivera17 result, respectively. Therefore, the com-
putationalwork used in the iterativeschemes1;17 is very close to that
used in the preceding scheme.

As shown in Eq. (31), because the matrix G is de� ned by the
systemmatricesof the fullmodeldirectly,thedynamiccondensation
matrix is only dependenton itself, as shown in Eq. (39). This means
the system matrices as well as the eigenpairs of the reduced model
have no effect on the iteration. We do not have to compute them
within every iteration. Therefore, the following iterative scheme is
presented.

Iterative Scheme 1
1) Choose the master degrees of freedom and compute all the

submatrices to be used in the following.
2) Calculate the initial approximation of the dynamic condensa-

tion R.0/ by using Eq. (40).
3) For i D 0; k; 2k; 3k, : : : , .k > 1/, begin the iteration:

a) Calculate the .i C k/th approximate dynamic condensation
matrix R.i C k/ by iterating Eq. (39) for k times.

b) Calculate the system matrices of the reduced model using
Eq. (15).

c) Solve for the eigenproblem of the reduced model

A.i C k/

R
QW .i C k/

mm D B.i C k/

R
QW .i C k/

mm
QX .i C k/

mm (43)

d) Check the convergence for the real and imaginary parts of
the eigenvaluesusing the convergent criterion

­­®.i C k/

j ¡ ®
.i/
j

­­
­­®.i C k/

j

­­ · "1; j D 1; 2; : : : ; p · m (44)

If the � rst p eigenvalues converge, exit the loop.
4) Output the dynamic condensation matrix R.i C k/ and system

matrices A.i C k/

R and B.i C k/

R of the reduced model.
Clearly, iterativescheme 1 becomes the classical iterativescheme

if k D 1 in the former. Because the computationof the system matri-
ces of the reducedmodel and the correspondingeigenproblemdoes
not affect the dynamic condensationmatrix, the dynamic condensa-
tion matrix R.i C k/ and the system matrices A.i C k/

R and B.i C k/

R of the
reduced model resulting from the two schemes should be identical.

As mentioned earlier, the major computational work for obtain-
ing the reduced model (A.i C k/

R and B.i C k/

R ) is k.W1 C W2 C W3/.
It is kW1 C W2 C W3 if iterative scheme 1 is used. Clearly,
.k ¡ 1/.W2 C W3/ computational work may be saved for k iter-
ations and .k ¡ 1/.W2 C W3/=k for one iteration. Here, W3 is the
computation of the eigenproblem of the reduced model in state
space. As we know, the computation of the eigenpairs is usually
very expensive, especially when the size of the reduced model or
the number of the master degrees of freedom is large.19 Therefore,
the computationaleffort required in iterative scheme 1 is much less
than the classical iterative scheme and the previous schemes1;17 if
k > 1 and the size of the reduced model is big.

In iterative scheme 1, the system matrices of the reduced model
and the correspondingeigenpairsare still to be computedafter a cou-
pleof iterations.Hence,anotheriterativescheme, iterativescheme2,
is presented.

Iterative Scheme 2
Steps 1 and 2 are similar to scheme 1.
3) For i D 0; 1; 2; 3, : : : , begin the iteration:

a) Calculate the .i C 1/th approximate dynamic condensation
matrix R.i C k/ by using Eq. (39).

b) Check the convergenceby using criterion

errorD 1 ¡

¡
r.i C 1/

j

¢T ¢ r.i/
j­­­­r.i C 1/

j

­­­­
2

¢
­­­­r.i/

j

­­­­
2

· "2; j D 1; 2; : : : ; m (45)

where r.i/
j and r.i C 1/

j are the j th column vectors of the i th and
.i C 1/th approximate dynamic condensation matrix, respectively.
If the m column vectors converge, exit the loop.
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4) Calculate the system matrices of the reduced model.
5) Solve for the eigenproblemof the reduced model if necessary.
6) Output the dynamic condensationmatrix and system matrices.
In this scheme, the system matrices of the reduced model are

only to be calculated after the dynamic condensation matrix con-
verges.The eigenpairsare to be computedonly when it is necessary.
Therefore,this scheme is a littlemore computationallyef� cient than
scheme 1.

D. Discussion on the Convergence
Scheme 2 is reproduced in a form that would be convenient for

the discussion of the convergence.
1) Suppose the dynamic condensation matrix is a zero matrix,

and construct subspace Xm as

Xm D
µ

I

R

¶
D

µ
I

0

¶
(46a)

2) Calculate the initially approximatedynamic condensationma-
trix by using the following two equations:

X.0/
m D

µ
X.0/

mm

X.0/
sm

¶
D A¡1BXm (46b)

R.0/ D X.0/
sm

¡
X.0/

mm

¢¡1
(46c)

3) For i D 0; 1; 2, : : : , begin the iteration. According to Eq. (29),
the .i C 1/th approximatecondensationmatrixcan be obtainedfrom
the following two equations:

X.i C 1/
m D A¡1BX.i /

m (46d)

R.i C 1/ D X.i C 1/
sm

¡
X.i C 1/

mm

¢¡1
(46e)

The following steps are similar to those in scheme 2. Clearly,
Eqs. (46c) and (46e) are equivalent to Eqs. (40) and (39).

Suppose the subspace Xm can be expressed as

Xm D QW D (47)

where D is a coef� cient matrix of 2n £ 2m. Introducing Eq. (47)
into Eq. (46b) results in

X.0/
m D A¡1B QW D (48)

When the orthogonalities of the eigenvector matrix (5) are consid-
ered, Eq. (48) can be written as

X.0/
m D QW QX ¡1D (49)

Equation (49) can be partitioned as
µ

X.0/
mm

X.0/
sm

¶
D

µ QW mm
QW ms

QW sm
QW ss

¶ µ QX ¡1
mm 0

0 QX ¡1
ss

¶ µ
Dmm

Dsm

¶
(50)

which is equivalent to the following two equations:

X.0/
mm D QW mm

QX ¡1
mm Dmm C QW ms

QX ¡1
ss Dsm (51a)

X.0/
sm D QW sm

QX ¡1
mm Dmm C QW ss

QX ¡1
ss Dsm (51b)

Introducing Eq. (51) into Eq. (46c) leads to

R.0/ D
¡ QW sm

QX ¡1
mm Dmm C QW ss

QX ¡1
ss Dsm

¢

£
¡ QW mm

QX ¡1
mm Dmm C QW ms

QX ¡1
ss Dsm

¢
(52)

Based on the same derivative procedure, the i th approximation of
the dynamic condensationmatrix is

R.i / D
¡ QW sm

QX ¡i ¡ 1

mm Dmm C QW ss
QX ¡i ¡ 1

ss Dsm

¢

£
¡ QW mm

QX ¡i ¡ 1
mm Dmm C QW ms

QX ¡i ¡ 1
ss Dsm

¢¡1
(53)

Because the moduli of all of the diagonal elements in matrix QX ss

are greater than those in matrix QX mm , one has

R.i / !
¡ QW sm

QX ¡i ¡ 1
mm Dmm

¢¡ QW mm
QX ¡i ¡ 1

mm Dmm

¢¡1
.i ! 1/

(54)

that is,

R.i/ ! QW sm
QW ¡1

mm .i ! 1/ (55)

in which QW sm
QW ¡1

mm is the exact value of the dynamic condensation
matrix.

V. Numerical Examples
Two factors affect the ef� ciency of an iterativemethod.One is the

computational effort at each iteration, and the other is the conver-
gence rate of each iteration. As discussed in the preceding section,
.k ¡ 1/.W2 C W3/=k computationalwork may be saved for each it-
eration if iterativescheme1 rather than the classicaliterativescheme
or previous schemes1;17 is used. The computational work of the it-
erative scheme 2 is a little less than scheme 1. For the � rst factor,
the proposed method or scheme is, therefore, superior to the pre-
vious approaches.1;17 The remainder is the second factor. Because
it is very dif� cult to discuss this factor theoretically, two numerical
examples are included. We will compare the results of the reduced
models obtained from differencecondensationapproachesiteration
by iteration. Therefore, only the classical iterative scheme will be
applied.

A. Mass–Damper–Stiffness System
A discrete mass–damper–spring system, shown in Fig. 1, is

considered. In this system, m i D 1:0 kg, ci D 0:5i N ¢ s/m, ki D
200i N/m, i D 1; 2; : : : ; 20. It has a total of 20 degrees of freedom.
The lower four complex eigenvalues are ¡0.017635§ j3.75602,
¡0.093032§ j8.62651,¡0.229146§ j13.5375,and ¡0.426827§
j18.4737. The 1st, 6th, 11th, and 16th degrees of freedom are se-
lectedas the master degreesof freedomwhen condensed.The errors
of the eigenvalues of the reduced model in the former 10 iterations
are listed in Table 1. The error is de� ned as

error D
®

.i/
j ¡ ®e

j

®e
j

; j D 1; 2; : : : ; m (56)

in which ®
.i/
j and ®e

j are the real/imaginary parts of the i th approxi-
mate and exact eigenvalues, respectively.The subscript denotes the
j th eigenvalue. Here, the eigenvalues are just used to demonstrate
how the reduced model closes to the full model and are not used for
eigenvalues themselves.

As shown clearly from the results in Table 1, the errors of the
initial approximations are very large, especially for the real parts
of the eigenvalues. All of the errors of the real parts are greater
than 100%. Clearly, the corresponding eigenvalues or the reduced
model is meaningless. The real parts of the eigenvalues resulting
from the reducing model converge to the exact result quickly when
iteration is applied.After 10 iterations, the errors reduce to less than
1000th of the initial approximations. The imaginary parts of the
eigenvaluesconvergeto theexact resultconsistentlyduringiterating.
These errors are all larger than zero, which means the frequenciesof
the reduced model are larger than the exact result, and the reduced
model closes to the full model from above. After 10 iterations, the
reduced model AR and BR , which is describedby the 1st, 6th, 11th,
and 16th degreesof freedom,can accuratelyrepresentthe full model
in low-frequency range with the highest error 0.5%. Therefore, it
can be used directly in the test-analysis model correlation, active
vibration control, and so on.

Fig. 1 Schematic of a mass–damping–spring system.



QU AND SELVAM 373

Table 1 Errors of the eigenvalues resulting from the present method (� rst example)

Eigenvalue 1 Eigenvalue 2 Eigenvalue 3 Eigenvalue 4

Iteration Real Imaginary Real Imaginary Real Imaginary Real Imaginary

0 2.1512552 0.7797515 1.6283808 0.6336569 2.5893398 0.9139061 3.4783698 1.1405928
1 0.0376853 0.0194171 0.0740226 0.0386519 0.1735704 0.0908992 0.7918929 0.3585053
2 0.0009842 0.0005183 0.0094122 0.0049531 0.0281767 0.0153288 0.3999646 0.1909331
3 0.0000295 0.0000162 0.0015202 0.0008250 0.0085762 0.0046863 0.2529920 0.1248303
4 0.0000008 0.0000005 0.0002289 0.0001341 0.0029887 0.0017053 0.1596758 0.0826897
5 0.0000001 0.0000000 0.0000305 0.0000206 0.0010016 0.0006262 0.0971780 0.0536903
6 0.0000001 0.0000000 0.0000034 0.0000030 0.0003061 0.0002237 0.0567344 0.0341650
7 0.0000001 0.0000000 0.0000002 0.0000004 0.0000816 0.0000776 0.0316483 0.0214215
8 0.0000001 0.0000000 ¡0.0000001 0.0000001 0.0000168 0.0000263 0.0166838 0.0133019
9 0.0000001 0.0000000 ¡0.0000001 0.0000000 0.0000011 0.0000088 0.0080867 0.0082104
10 0.0000001 0.0000000 ¡0.0000001 0.0000000 ¡0.0000014 0.0000029 0.0033505 0.0050493

Table 2 Errors of the eigenvalues resulting from the methods in Refs. 1 and 17 (� rst example)

Eigenvalue 1 Eigenvalue 2 Eigenvalue 3 Eigenvalue 4

Iteration Real Imaginary Real Imaginary Real Imaginary Real Imaginary

0 2.1838096 0.7842803 1.7100118 0.6460477 2.7415020 0.9335364 3.7014501 1.1661395
1 0.0401281 0.0198662 0.0816702 0.0400288 0.2000310 0.0954278 0.8787399 0.3703498
2 0.0010520 0.0005277 0.0100792 0.0050451 0.0316698 0.0158046 0.4238226 0.1936800
3 ¡0.0001706 0.0001661 ¡0.0016805 0.0016146 0.0073571 0.0091645 0.2004699 0.1397557
4 0.0000087 0.0000939 ¡0.0007934 0.0007919 0.0041386 0.0062445 0.1254392 0.1085293
5 0.0000280 0.0000594 ¡0.0002532 0.0004676 0.0025620 0.0044749 0.0793301 0.0868355
6 0.0000240 0.0000392 ¡0.0000509 0.0003051 0.0017376 0.0032970 0.0549462 0.0712837
7 0.0000183 0.0000264 0.0000148 0.0002105 0.0012408 0.0024765 0.0400760 0.0594741
8 0.0000136 0.0000181 0.0000345 0.0001507 0.0009278 0.0018912 0.0309810 0.0503048
9 0.0000104 0.0000127 0.0000388 0.0001109 0.0007208 0.0014663 0.0247807 0.0430165
10 0.0000079 0.0000090 0.0000376 0.0000834 0.0005791 0.0011532 0.0204588 0.0371398

Table 3 Real parts of the complex frequencies (rad/s) resulting from the present method (second example)

Iteration Frequency 1 Frequency 2 Frequency 3 Frequency 4 Frequency 5 Frequency 6 Frequency 7 Frequency 8 Frequency 9 Frequency 10

0 ¡0.351257 ¡0.459752 ¡3.35444 ¡20.2196 ¡29.4092 ¡16.2522 ¡54.9616 ¡57.6414 ¡154.475 ¡61.6006
2 ¡0.334284 ¡0.454051 ¡0.322134 ¡6.71912 ¡10.3897 ¡7.67817 ¡7.86572 ¡19.8781 ¡21.5751 ¡37.6786
4 ¡0.334283 ¡0.454051 ¡0.321728 ¡6.48547 ¡9.77570 ¡6.77129 ¡7.50688 ¡18.1923 ¡16.3887 4.99675
6 ¡0.334283 ¡0.454051 ¡0.321728 ¡6.46571 ¡9.76763 ¡6.72992 ¡7.46009 ¡12.5756 ¡17.9246 ¡17.3053
8 ¡0.334283 ¡0.454051 ¡0.321728 ¡6.46483 ¡9.76748 ¡6.72766 ¡7.49449 ¡13.3257 ¡17.8943 ¡16.4704
10 ¡0.334283 ¡0.454051 ¡0.321728 ¡6.46483 ¡9.76748 ¡6.72764 ¡7.49304 ¡12.9869 ¡17.8887 ¡16.4175
12 ¡0.334283 ¡0.454051 ¡0.321728 ¡6.46483 ¡9.76748 ¡6.72764 ¡7.49290 ¡12.9500 ¡17.8875 ¡16.4105
Exact ¡0.334283 ¡0.454051 ¡0.321728 ¡6.46483 ¡9.76748 ¡6.72764 ¡7.49290 ¡12.9449 ¡17.8871 ¡16.4082

For comparisonpurpose,theerrors resultingfromuseof themeth-
ods in Refs. 1 and 17 are listed in Table 2. Although there is little
differencebetween the errors of the initial approximationsresulting
from the two kinds of methods, the errors obtained from the present
method reduce much more quickly than those from methods of
Refs. 1 and 17.

The dampingmatrix in this exampleis proportionalto the stiffness
matrix becauseof the particular selectionof the damping matrix.As
mentioned in the Introduction, the dynamic condensation method
for undamped systems can be used to solve the problem directly.
Here,we want to showthat thedynamiccondensationapproachesfor
nonclassicallydampedsystemscanalso be applied to proportionally
damped models and that the present method is more ef� cient and
accurate than the approaches in Refs. 1 and 17 for proportionally
damped models.

B. Floating Raft Isolation System
For the second example, the � oating raft isolation system de-

scribed in Ref. 20 is considered. The machines to be isolated are
denoted by m1 D 100 kg and m2 D 120 kg. A and B are rectangular
platesand denotethe raft frameand base, respectively.Their lengths,
widths, and thicknesses are 1.2, 0.8, and 0.02 m and 2.8, 0.8, and
0.04 m, respectively. Their modulus of elasticity is 2.0E11 N/m2

and mass density is 7800 kg/m3. The two short sides of plate B
are simply supported, and the two long sides are free. The four
sides of plate A are all free, and k1 D 1:0E5 N/m, k2 D 5:0E5 N/m,

c1 D 100 N ¢ s/m2 , and c2 D 200 N ¢ s/m2. The raft frame and the base
arediscretizedusingthe � niteelementmethod.They aredividedinto
24 and 14 rectangular elements, respectively. The de� nition of the
elements, nodes, and the connections with other components may
be found in Ref. 20. The isolation system has a total of 179 degrees
of freedom under this discretization.

The degrees of freedom associated with the two machines, and
the translational degrees of freedom at nodes 2, 4, 8, 9, 14, 22 in
the raft and at nodes 9 and 14 in the base are selected as the master
degrees of freedom when the dynamic condensation is applied. All
of the frequencies of the reduced model in former 12 iterations are
listed in Tables 3 and 4. The results obtained from the methods in
Refs. 1 and 17 are listed in Tables 5 and 6 for comparison purpose.
In Tables 3–6 boldface numbers denote the signi� cant digits. Ex-
act indicates the results obtained from the full model. Because the
reduced model is derived from the full model, it is reasonable to
consider the full model as exact. Again, the results show that the
proposed method is ef� cient for nonclassically damped systems.
Although the reduced model only has 10 degreesof freedom, which
is about one 18th of the full model, it is a good representationof the
full model in frequency range (0, 500) rad/s after 10 iterations.

Because the lower eigenvaluesusually convergemuch faster than
the higher, the 9th and 10th eigenvalues of the reduced model are
considered here. The errors of these two eigenvalues computed for
four cases are shown in Figs. 2 and 3, respectively. In Figs. 2 and 3,
case A denotes the results obtained from the methods in Refs. 1
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Table 4 Imaginary parts of the complex frequencies (rad/s) resulting from the present method (second example)

Iteration Frequency 1 Frequency 2 Frequency 3 Frequency 4 Frequency 5 Frequency 6 Frequency 7 Frequency 8 Frequency 9 Frequency 10

0 27.6811 30.8131 193.028 362.290 510.015 673.639 732.313 1076.46 1922.65 2986.84
2 27.4784 30.7270 67.4832 227.711 231.199 242.250 347.848 555.324 565.686 1326.30
4 27.4784 30.7270 67.4671 226.812 227.922 238.772 340.325 534.822 542.570 978.800
6 27.4784 30.7270 67.4671 226.761 227.902 238.649 337.011 491.904 533.991 546.799
8 27.4784 30.7270 67.4671 226.759 227.902 238.642 335.960 420.814 533.940 542.968
10 27.4784 30.7270 67.4671 226.759 227.902 238.642 335.931 418.423 533.935 542.839
12 27.4784 30.7270 67.4671 226.759 227.902 238.642 335.931 418.327 533.934 542.828
Exact 27.4784 30.7270 67.4671 226.759 227.902 238.642 335.931 418.319 533.934 542.827

Table 5 Real parts of the complex frequencies (rad/s) resulted from methods of Refs. 1 and 17 (second example)

Iteration Frequency 1 Frequency 2 Frequency 3 Frequency 4 Frequency 5 Frequency 6 Frequency 7 Frequency 8 Frequency 9 Frequency 10

0 ¡0.352946 ¡0.460291 ¡42.6293 ¡245.045 ¡281.990 ¡165.917 ¡617.559 ¡589.828 ¡978.437 ¡277.549
2 ¡0.334284 ¡0.454051 ¡0.322140 ¡6.84264 ¡10.6025 ¡7.83154 ¡8.16662 ¡19.2819 ¡22.4687 ¡34.6759
4 ¡0.334283 ¡0.454051 ¡0.321539 ¡6.50874 ¡9.76172 ¡6.76654 ¡7.52963 ¡18.0864 ¡16.3650 5.53147
6 ¡0.334283 ¡0.454051 ¡0.321560 ¡6.47890 ¡9.75627 ¡6.73457 ¡7.42061 ¡13.0259 ¡17.9903 ¡18.7647
8 ¡0.334283 ¡0.454051 ¡0.321574 ¡6.47562 ¡9.75746 ¡6.73192 ¡7.43290 ¡13.0361 ¡17.9497 ¡16.6137
10 ¡0.334283 ¡0.454051 ¡0.321587 ¡6.47423 ¡9.75834 ¡6.73122 ¡7.44992 ¡13.0567 ¡17.9439 ¡16.5342
12 ¡0.334283 ¡0.454051 ¡0.321597 ¡6.47318 ¡9.75889 ¡6.73066 ¡7.45960 ¡13.0879 ¡17.9428 ¡16.5134
Exact ¡0.334283 ¡0.454051 ¡0.321728 ¡6.46483 ¡9.76748 ¡6.72764 ¡7.49290 ¡12.9449 ¡17.8871 ¡16.4082

Table 6 Imaginary parts of the complex frequencies (rad/s) resulted from methods of Refs. 1 and 17 (second example)

Iteration Frequency 1 Frequency 2 Frequency 3 Frequency 4 Frequency 5 Frequency 6 Frequency 7 Frequency 8 Frequency 9 Frequency 10

0 27.7031 30.8217 648.039 1301.90 1783.21 2147.30 2568.93 3541.74 4999.02 6493.01
2 27.4784 30.7270 67.4935 228.193 233.059 242.776 355.506 559.382 566.196 1291.61
4 27.4784 30.7270 67.4689 226.932 228.368 238.978 343.999 537.682 544.449 998.693
6 27.4784 30.7270 67.4688 226.842 228.288 238.850 339.298 524.540 536.245 554.278
8 27.4784 30.7270 67.4688 226.831 228.262 238.828 337.788 445.774 535.780 544.407
10 27.4784 30.7270 67.4688 226.825 228.245 238.817 337.463 436.950 535.571 544.096
12 27.4784 30.7270 67.4688 226.821 228.230 238.809 337.271 433.454 535.445 543.985
Exact 27.4784 30.7270 67.4671 226.759 227.902 238.642 335.931 418.319 533.934 542.827

Real parts

Imaginary parts

Fig. 2 Errors of the ninth eigenvalue for the four cases.

Real parts

Imaginary parts

Fig. 3 Errors of the 10th eigenvalue for the four cases.
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and 17. Cases B, C, and D result from the proposed method for
k D 1, 2, and 3, respectively.Clearly, the convergenceof the present
methodis much faster than the methodsin Refs. 1 and17. It becomes
faster with increasing k.

VI. Conclusions
Based on the subspace iteration method for nonclassically

damped systems, an ef� cient approach for the dynamic conden-
sation was derived. Two iterative schemes have been presented for
this method. The proof of the convergenceof these two schemes is
very simple, whereas it is very dif� cult for the methods in Refs. 1
and 17. Two numerical examples were included to demonstrate the
convergenceof the present approach.

On one hand, the dynamic condensation matrix is independent
of the system matrices and eigenproblem of the reduced model.
Hence, it is unnecessary to calculate them at each of iterations as
shown in iterativeschemes1 and 2. Signi� cantcomputationaleffort,
about .k ¡ 1/.W2 C W3/=k, may be saved for each iteration.On the
other hand, even though the classical iterative scheme is used in the
two examples, the convergence of the present approach is much
faster than with the methods in Refs. 1 and 17, especially when
the approximate values of the reduced model are close to those
of the full model. Therefore, the proposed method is much more
computationallyef� cient than the methods in Refs. 1 and 17.

The reduced model can represent the full model in the low-
frequency range after several iterations. Although several schemes
for the selectionof the master degreesof freedom can be used to ac-
celerate the convergence,they do notwork for many cases.1 Further-
more, these schemes are usually very computationallyexpensive.
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